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Off-Shell Relativistic Quantum Mechanics and
Formulation of Dirac’s Equation Using
Characteristic Matrices
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It is argued that the Klein±Gordon equation is an equation for characteristic
functions, i.e., Fourier-transformed Wigner functions, not for wave functions.
This statement is derived starting from the off-shell formulation of relativistic
quantum mechanics by expressing the condition that the mass of the particle
is exactly known. A particular class of solutions of the Klein±Gordon equation
is formed by the integrable superpositions of pure momentum states. A direct
sum of four copies of the associated Gelfand ±Naimark ±Segal representation
is considered. Then one can derive from the Klein±Gordon equation an
equation for spinor wave functions. Solutions of the latter equation are in
one-to-one correspondence to the solutions of the Fourier-transformed Dirac
equation. Finally, the equation is reformulated as an equation for
characteristic matrices.

1. INTRODUCTION

Aparicio et al. (1995) review various proper time formulations of relativ-

istic quantum mechanics (RQM). In most approaches the proper time is a
scalar parameter. Often wave equations with second-order space-time deriva-

tives are considered. The present paper adopts the equation introduced inde-

pendently by Johnson (1969, 1971) and Moses (1969). The equation contains

a first-order derivative with respect to proper time. Time and space coordinates

are treated on the same footing by introducing a four-vector of position

operators Q m and associated momentum operators P m , m 5 0, 1, 2, 3. In
particular, one has Q0 5 ct and P0 5 E/c with t the time operator and E the
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energy operator. The generator of the proper time evolution of a free particle

is proportional to the mass operator m, which is given by

m 5
1

c ! o
3

m 5 0
g m m P2

m (1.1)

The present paper combines Johnson’ s formalism with the C*-algebraic

approach. The C*-algebra of canonical commutation relations (CCR) is gener-

ated by the bounded operators

W( p, q) 5 exp[i " 2 1 o
m

g m , m ( p m Q m 1 q m P m )] (1.2)

indexed by parameters p and q in four-space R 4. This algebra is often called

the Weyl algebra. It has already been used to describe a quantized relativistic
particle (Carey et al., 1977). Following Moyal (1947), the function f given by

f ( p, q) 5 ^ W( p, q) & (1.3)

is called the characteristic function of the state of the particle. Here ^ ? & denotes

the quantum mechanical expectation value. The Fourier transform of f is the

Wigner function, if it exists.

An important advantage of the formalism, besides mathematical rigor,
is the ease with which singular physical states can be described. These singular

states appear in the present context when particles with exact mass are

described. Indeed, the momentum states considered in Section 7 are described

by characteristic functions of the form f ( p, q) 5 d p,0 f (q). Clearly, such

singular states cannot be described by Wigner functions.

There seems to be a consensus in the literature that the Klein±Gordon
equation is not an equation for wave functions, but rather an equation for

classical fields. The statement here is that it is a quantum mechanical equation,

more precisely, an equation for characteristic functions of the form given

above. The advantage of this interpretation is that with a characteristic function

is associated a state which has a quantum probabilistic interpretation in the

C*-algebraic sense. In particular, the state is positive and normalized. The
particle has exact mass m and a classical probability distribution of momenta.

As expected from the canonical commutation relations, in combination with

the exact knowledge of the mass, the particle is delocalized in space-time.

From the Klein±Gordon equation one can derive the Dirac equation in

a straightforward manner, as was first shown by van der Waerden (see,

e.g., Sakurai, 1967). This derivation can be made in terms of characteristic
functions. It is, however, more convincing if the Hilbert space representation

of solutions of the Klein±Gordon equation is constructed first. Next the

transition from Klein±Gordon to Dirac is made by indroducing Dirac spinors,

i.e., 4-tuples of wave functions. At this point it will be shown that there is
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a one-to-one correspondence between the Dirac-like equation of the present

paper and the known solutions of the Fourier-transformed Dirac equation.

The final result of the paper is an equation for 4-by-4 matrices of functions,
which will be called characteristic matrices hereafter.

Several interesting questions raised by the present approach will be

answered in a forthcoming publication. Although all equations of the present

paper are covariant by construction, it is interesting to do the symmetry

analysis in an explicit manner because it is known from conventional on-

shell RQM that this reveals the nature of the quantum particles described by
the theory.

The next step is the transition from the description of free particles to

that of particles in an electromagnetic field. Finally, the transition from a

one-particle to a many-particle theory looks promising for more than one

reason. The present formalism has already a quantum-probabilistic interpreta-

tion in the one-particle case, which is not the case for the conventional on-
shell theory. Also the formalism of Weyl algebras and characteristic functions

allows us to introduce a many-particle description in a natural way via the

concept of quasi-free states, (Manuceau et al., 1968).

Sections 2±4 introduce the necessary notations. Section 5 discusses the

Weyl transform, the relation between characteristic functions and Wigner
functions, and the proper time equation of motion for characteristic functions

in case of a free particle. These topics are not needed for the remainder of

the paper. Their discussion is added for convenience of the reader. In Section

6 equations are derived which express the conditions under which a character-

istic function describes a particle with exactly known mass m. This leads in

Section 7 to the Klein±Gordon equation for characteristic functions, after
introduction of the concept of momentum states. In Section 8 a Hilbert

space representation of the Weyl algebra corresponding to solutions of the

Klein±Gordon equation is constructed. This is used in Section 9 to make the

transition toward a Dirac equation. In the final section the Dirac equation is

reformulated as an equation for characteristic matrices.

2. OFF-SHELL RQM

In the Hilbert space approach to RQM it is obvious to start with the

Hilbert space * 5 +2( R 4, C ) of square-integrable complex functions over

four-space R 4. The zeroth component of the position q0 is proportional to

the time t: q0 5 ct (c is the speed of light). In this Hilbert space the time
and position operators are multiplication operators: Q m c (q) 5 q m c (q), m 5
0, 1, 2, 3. Obviously, the time operator T satisfies Q0 5 cT. A wave function

c is a normalized element of the Hilbert space. It is uniquely determined by

the state of the particle, up to a complex phase factor. An immediate conse-
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quence is that a particle has both time and position uncertainty, while in the

standard approach the time is a parameter chosen by the observer. The

momentum operators are given by

P m 5 g m , m i "
-

- q m
(2.1)

(the metric tensor g has nonzero elements g0,0 5 1 and g1,1 5 g2,2 5 g3,3 5
2 1). The energy operator E is given by E 5 cP0.

For each Lorentz transformation L and each shift a P R 4 a unitary

operator U L ,a of * is determined by

U L , a c (q) 5 c ( L q 1 a) (2.2)

for all c P *, q P R 4 (note that the Jacobian of L equals 1). The map

( L , a) ® U L , a is a unitary representation of the PoincareÂgroup.
The mass operator m is given by (1.1). It is invariant under the action

of the PoincareÂgroup. Mathematically, m is a function of the commuting

self-adjoint operators P m , m 5 0, 1, 2, 3. Hence its existence follows from

the spectral theorem. Note that m can be written as m 5 m1 1 im2 with m1

and m2 commuting positive operators. In fact, one can split the Hilbert space

into two orthogonal components *1 and *2 with the property that

o
3

m 5 0 g m m P2
m is positive on *1 and negative on *2. Then m equals m1 on

*1 and im2 on *2. On physical grounds one could require that the mass

operator is positive, in which case wave functions representing a physical

particle should belong to *1. This restriction does not introduce any problems

since *1 is PoincareÂ-invariant. For representations of the CCR the full Hilbert
space is needed (see the next section).

3. THE ALGEBRA OF THE CCR

The notion of the algebra of canonical commutation relations goes back
to Weyl and von Neumann (see Emch, 1984, Section 8.3). The formalism

of Weyl algebras was developed by Segal. The C*-algebraic formulation is

due to Manuceau (1968; see also Carey et al., 1977). An introductory text

is found in Petz (1990).

The C*-algebra is generated by operators

{W( p, q): p, q P R n} (3.1)

[in (Moyal 1947) the notation M( t , u ) is used instead of W( p, q)]. These

operators satisfy the relations

W(0, 0) 5 I

W( p, q)W( p8, q8) 5 W( p 1 p8, q 1 q8) exp[i s ( p, q; p8, q8)/2 " ] (3.2)
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where s is a nondegenerate simplectic form [i.e., s is bilinear and antisymmet-

ric, s (x, y) 5 0 for all y implies x 5 0].

In the present case of relativistic quantum mechanics of a single particle
it is obvious to take n 5 4 and

s ( p, q; p8, q8) 5 o
m

g m , m ( p m q 8m 2 q m p 8m ) (3.3)

For a given number of degrees of freedom n, there is only one irreducible

representation of the algebra of the CCR for which all maps

l P R ® W( l p , l q) (3.4)

are continuous. In the present case, this representation is (formally) given
up to unitary equivalence by expression (1.2). A definition which is more

convenient than (1.2) is

W( p, q) 5 e 2 ipgq/2 " e ipgQ/ " e iqgP/ " (3.5)

Useful relations are

[W( p, q), P m ] 5 p m W( p, q), [W( p, q), Q m ] 5 2 q m W( p, q) (3.6a)

and

W( p, q)W( p8, q8) 5 ei s (p,q;p8,q8)/2 " W( p 1 p8, q 1 q8) (3.6b)

4. CHARACTERISTIC FUNCTIONS

In the present context, the interest in the algebra of the CCR arises from

the fact that it also has representations for which the maps (3.4) are not
necessarily continuous. In particular, one is interested in representations used

in on-shell RQM. These will be obtained by considering physical states of

the system which do not correspond with a normalized wave function c in

+2( R 4, C ). Now, starting from a wave function c , the characteristic function

of the state of the particle is defined as a complex-valued function f given by

f ( p, q) 5 ^ W( p, q) & 5 ^ c | W( p, q) | c & (4.1)

(two notations are used for the inner product of the Hilbert space; they are
related by ^ f | A | c & 5 (A c , f )). If the representation of the algebra of the

CCR is continuous, then also the function f is continuous in p and q. By

dropping the condition that f should be continuous one can enlarge the set

of physical states. It turns out that the largest interesting set of states corres-
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ponds to the set of all f satisfying the following conditions:

x Normalization:

f (0, 0) 5 1 (4.2a)

x Positivity condition:

o
n

j,k 5 1

l j l ke
2 i s (pj ,qj ;pk,qk)/2 " f ( pj 2 pk , qj 2 qk) $ 0 (4.2b)

for all possible choices of l 1, . . . , l n P C , p1, q1, . . . , pn , qn P R 4.

Note that the function f must be defined everywhere, but need not to
be continuous. Under the conditions (4.2) there exists a mathematical state on

the C*-algebra of the CCR. Such a state is the generalization of a probability

measure, and as such it has a (quantum) probabilistic interpretation. However,

the quantum expectation ^ A & of an observable A is not always defined. The

expectation values of polynomials in the position and momentum operators

are obtained by taking partial derivatives of f. For example, if the function
q m ® f (0, q) is n times differentiable with respect to q m at q 5 0 then

^ P n
m & 5 1 2 i " g m , m

-
- q m 2

n

f (0, q) Z q 5 0

(4.3)

Similarly, if the function p m ® f (p, q) is n times differentiable with respect

to p m at p 5 0, then the nth moment of the position is given by

^ Q n
m & 5 1 2 i " g m , m

-
- p m 2

n

f ( p, 0) Z p 5 0

(4.4)

Since the function f does not need to be differentiable the average position

and momentum of the particle are not always defined. Weyl (1928) tried to
solve this problem using distributions. This formalism is avoided in the

present paper, but is briefly discussed in the next section.

Before going on, note that the W operators transform under an element

( L , a) of the PoincareÂgroup as

U*L , aW( p, q)U L , a 5 e i " 2 1pgaW( L p, L q) (4.5)

The characteristic function f( p, q) transforms into

f ( p, q) ® (W( p, q)U L , a c , U L , a c ) 5 e i " 2 1pgaf ( L p, L q) (4.6)

5. PROPER TIME EVOLUTION

The Weyl transform of an observable A is a complex function a [
a (p, q), which can be defined through (Weyl, 1931; Moyal 1947; de

Groot, 1974)
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A 5 " 2 4 # dp # dq aÄ ( p, q)W( p, q) (5.1)

where aÄ [ aÄ ( p, q) is the Fourier transform of a,

aÄ ( p, q) 5 " 2 4 # dp8 # dq8 ei " 2 1pgq8e 2 i " 2 1p8gqa ( p8, q8) (5.2)

The expectation value of an observable A is then formally given by

^ A & 5 " 2 4 # dp # dq aÄ ( p, q)f (p, q) (5.3)

5 " 2 4 # dp8 # dq8 a (p8, q8) r ( p8, q8)

where

r ( p8, q8) 5 " 2 4 # dp # dq e i " 2 1pgq8e 2 i " 2 1p8gqf (p, q) (5.4)

r is called the Wigner function. It is the Fourier transform of the characteristic

function f.
Using the Weyl transform, it is easy to obtain the proper time evolution

of the characteristic function f of a free particle. The generator of the proper

time evolution is mc 2 [Moses (1969) proposed to use m1 instead of m because

the latter is not self-adjoint; Johnson (1969) restricts physical states to wave

functions in *1]. A short calculation gives

ei " 2 1mc2 t 5 # R 4
dq b t (q)W(0, q) (5.5)

with

b t (q) 5 (2 p ) 2 4 # R 4
dk e 2 ikgq e ic t k (k) (5.6)

and k (q) 5 ( o
3

m 5 0

g m , m q 2
m ) 1/2. Hence we obtain

f t ( p, q) 5 (W( p, q) c t , c t )

5 (W( p, q)e i " 2 1 mc2 t c , ei " 2 1mc2 t c )

5 # R 4
dq8 # R 4

dq9 b t (q8) b t (q9)(W( p, q)W(0, q8) c , W(0, q9) c )
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5 # R 4
dq8 # R 4

dq9 b t (q8) b t (q9) e ipg(q8 1 q9)/2 " f (p, q 1 q8 2 q9)

5 # R 4
dq8 eipgq8/2 " j t ( p, q8)f (p, q 1 q8) (5.7)

with

j t ( p, q) 5 (2 p ) 2 4 # R 4
dk e 2 ikgq e ict k (k) e 2 ic t k (k 2 p/ " ) (5.8)

It is a solution of the equation of motion

i "
d

d t
f t ( p, q) 5 # R 4

dq8 e 2 ipgq8/2 " z ( p, q8)f t ( p, q 2 q8) (5.9)

with

z ( p, q) 5 2 " c(2 p ) 2 4 # R 4
dk e ikgq ( k (k) 2 k (k 2 p / " )) (5.10)

Note that

f t (0, 0) 5 # R 4
dq j t (0, q)f (0, q) (5.11)

which, in general, is not equal to 1. Hence the function f t is not properly

normalized. This is a consequence of the fact that the mass operator m is

not self-adjoint. Only when the characteristic function f corresponds to a

wave function in *1 (or a superposition of such wave functions) does one

expect normalization to be conserved. Conversely, if the generator of proper

time evolution is m1c
2, then the definition of k should be replaced by

k (l) 5 1 o
3

m 5 0

g m , m l 2
m 2

1/2

if o
3

m 5 0

g m , m l 2
m $ 0

5 0 otherwise (5.12)

In that case (5.8) yields j t (0, q) 5 d (q), so that (5.11) implies that ft (0, 0) 5
f (0, 0).

6. MASS STATES IN RQM

Let us now derive the conditions under which the function f describes

a particle with exact mass m. No such solution can be found in the off-
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shell Hilbert space formulation because the mass operator m has a purely

continuous spectrum. It does not have any eigenstate in +2 ( R 4, C ).

A short calculation using (3.5) gives

-
- q m

(e ipgq/2 " W( p, q)) 5 e ipgq/2 " W( p, q)
i

"
(gP) m (6.1)

and hence

- 2

- q 2
m
(e ipgq/2 " W( p, q)) 5

-
- q m

(eipgq/2 " W( p, q))
i

"
(gP) m

5 e ipgq/2 " W( p, q)
2 1

" 2 P2
m (6.2)

The d’ Alembertian is denoted by

Mq [ o
3

m 5 0
g m , n

- 2

- q 2
m

(6.3)

Using (6.2), (6.3), and the definition of the mass operator m in (1.1), one
obtains for suitable wave functions c

Mq(e
ipgq/2 " ^ c | W( p, q) | c & ) 5 2

c 2

" 2e
ipgq/2 " ^ c | W( p, q)m2 | c & (6.4)

Take now a sequence of wave functions c which approximate an exact

eigenstate of m with eigenvalue m. The expectation values ^ c | W( p, q) | c &
then accumulate to a function f which satisfies the equation

Mq(e
ipgq/2 " f (p, q)) 5 2

c 2

" 2m
2e ipgq/2 " f (p, q) (6.5)

The latter equation can be written out as

2 " 2Mq f (p, q) 2 " 2 o
3

m 5 0
g m , m 1 i " 2 1p m g m , m

-
- q m

2
1

4 " 2 p 2
m 2 f (p, q)

5 m 2c 2f (p, q) (6.6a)

Also the complex conjugate equation should hold. After changing the signs

of p and q it becomes

2 " 2Mq f (p, q) 2 " 2 o
3

m 5 0
g m , m 1 2 i " 2 1p m g m , m

-
- q m

2
1

4 " 2 p 2
m 2 f (p, q)

5 m 2c 2f (p, q) (6.6b)
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By adding and subtracting both equations one obtains

o
3

m 5 0
p m

- f

- q m
5 0 (6.7a)

and

2 " 2Mq f (p, q) 5 (m 2c 2 1
1

4
| p | 2) f (p, q) (6.7b)

Let us postulate that a relativistic particle is in a state with exact mass m if

it is described by a characteristic function f which satisfies conditions (6.7).

Condition (6.7b) generalizes the Klein±Gordon equation, which is discussed

in the next section.

7. MOMENTUM STATES IN RQM

Momentum states in nonrelativistic quantum mechanics represent parti-
cles with exact momentum (Fannes et al., 1974). Their characteristic function

is of the form f ( p, q) 5 d p,0 f (q), where d p,0 is the Kronecker symbol, which

equals one if p 5 0 and zero otherwise. The positivity and normalization

requirements (4.2) become:

Normalization:

f (0) 5 1 (7.1a)

Positivity condition:

o
n

j,k 5 1

l j l k f (qj 2 q k ) $ 0 (7.1b)

for all choices of l 1, . . . , l n P C and q1, . . . ,qn P R 4.

The condition (6.7a) is satisfied automatically. Hence, a state of this
type describes a particle with exact mass m if (6.7b) is satisfied. The latter

equation simplifies to:

Exact mass condition:

2 " 2Mq f (q) 5 m 2c 2 f (q) (7.1c)

Equation (7.1c) is known as the Klein±Gordon equation.

Any k P R 4 which satisfies | " k | 2 5 m 2c 2 determines a solution f of

equations (7.1) by

f (q) 5 exp(ikgq) (7.2)

From (4.3) it follows that ^ P n
m & 5 ( " k)n, n $ 0. Hence the solution describes

a particle with mass m and exact 4-momentum " k. On the other hand, the
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position of this particle is not defined. The solutions of the form f (p, q) 5
d p,0 f (q) with f given by (7.2) are pure momentum states.

A more general class of solutions of conditions (7.1) is formed by the
integrable superpositions of pure momentum states:

f (q) 5 # R 3
dk exp( 2 i o

3

m 5 1
q m k m )

3 {[exp(iq0 ! | k | 2 1 m 2c 2/ " 2)] f Ä 0(k) (7.3)

1 [exp( 2 iq0 ! | k | 2 1 m 2c 2/ " 2)] f Ä 1(k)}

with f Ä 0, f Ä 1 any normalized pair of nonnegative integrable functions

f Ä k (k) $ 0, k 5 0,1, # R 3
dk ( f Ä 0(k) 1 f Ä 1(k)) 5 1 (7.4)

for which

# R 3
dk k 2

m f Ä k (k) , ` , m 5 0, . . . , 4, k 5 0,1 (7.5)

The latter condition is required to ensure that f is twice differentiable so

that the l.h.s. of (7.1c) is well defined. If (7.1c) is interpreted in the distribu-
tional sense, then (7.5) is not needed.

The average energy and momentum of this particle satisfy

^ E n & 5 c # R 3
dk ( " 2 | k | 2 1 m 2c 2) n/2[ f Ä 0(k) 1 ( 2 1)n f Ä 1(k)]

(7.6)

^ P n
a & 5 # R 3

dk ( " k a )n[ f Ä 0(k) 1 f Ä 1(k)], a 5 1, 2, 3

provided that the integrals converge. Hence (7.3) describes a superposition
of momentum states. Both positive and negative energy states can contribute.

8. HILBERT SPACE REPRESENTATION OF MOMENTUM
STATES

The Gelfand±Naimark±Segal representation (Dixmier, 1964) corres-
ponding to the state (7.3) is constructed as follows. Let * be the Hilbert

space of wave functions

1 c 0, p

c 1, p 2 (k) (8.1)
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for which

o
p P R 4 # R 3

dk ( ) c 0, p(k) ) 2 1 ) c 1, p(k) ) 2) , ` (8.2)

Define multiplication operators P m , m 5 0,. . . , 3, by

P0 1 c 0, p(k)

c 1, p(k) 2 5 ( ! " 2 | k | 2 1 m 2c 2 1 p0) 1 c 0, p(k)

2 c 1, p(k) 2 (8.3)

P a 1 c 0, p(k)

c 1, p(k) 2 5 ( " k a 1 p a ) 1 c 0, p(k)

c 1, p(k) 2 , a 5 1, 2, 3

Define unitary operators Up , p P R 4, by

Up 1 c 0, p8

c 1, p8 2 (k) 5 1 c 0, p8 1 p

c 1, p8 1 p 2 (k) (8.4)

Now let

W( p, q) 5 Upe
iqg (P 2 p/2)/ " (8.5)

The operators W( p, q) generate a representation of the algebra of CCR. Let

the wave function c be given by

c k , p(k) 5 d p,0( f Ä k (k))1/2, k 5 0, 1 (8.6)

Then one calculates

^ c | W( p, q) | c & 5 o
p8 P R 4 # R 3

dk K c 0, p8 1 p(k)

c 1, p8 1 p(k) Z e iqg(P 2 p/2)/ " Z c 0, p8(k)

c 1, p8(k) L
5 d p,0 # R 3

dk K ( f Ä 0(k))1/2

( f Ä 1(k))1/2 Z eiqgP/ " Z ( f Ä 0(k))1/2

( f Ä 1(k))1/2 L (8.7)

5 d p,0 f (q)

with f given by (7.3). This shows that in this representation the state of the

particle is represented by a wave function c .
Finally note that the Klein±Gordon equation (7.1c) can be written as

o
3

m 5 0
g m , m ^ c ) e iqgP/ " P2

m ) c &

5 m 2c 2 ^ c ) e iqgP/ " ) c & for all q P R 4 (8.8)
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The equation is rather trivial since any wave function c in this representation

satisfies by construction

o
3

m 5 0

g m , m (P m 2 p m )2 c k ,p 5 m 2c2 c k , p, k 5 0, 1, p P R 4 (8.9)

Hence, wave functions of the form (8.6) satisfy

o
3

m 5 0

g m , m P2
m c 5 m 2c 2 c (8.10)

The latter equation implies (8.8).

9. DIRAC’S EQUATION

Construct a new representation of the CCR which is the direct sum of

four identical copies of the previous representation. The wave function c in
(8.7) is now replaced by a Dirac spinor

c 5 1
c 0

c 1

c 2

c 3 2 with o
3

m 5 0
) ) c m ) ) 2 5 1 (9.1)

Each c m is itself of the form (8.1).

The Pauli matrices are defined by

s 1 5 1 0 1

1 0 2 , s 2 5 1 0 2 i

i 0 2 , s 3 5 1 1 0

0 2 1 2 (9.2)

The identity matrix is denoted s 0, so that any 2-by-2 matrix can be written

as a linear combination o
3

m 5 0 l m s m . Note that the product of two Pauli matrices
is again a Pauli matrix (or the identity matrix s 0) up to a scalar factor.

Introduce matrices g m , m 5 0, 1, 2, 3, by

g 0 5 1 0 I 2

I 2 0 2 , g a 5 1 0 2 s a

s a 0 2 , a 5 1, 2, 3 (9.3)

[this is the so-called Weyl representation of the g -matrices; see, e.g., Scharf

(1989, Section 1.2)]. They satisfy the anticommutation relations

g m g n 1 g n g m 5 2g m , n (9.4)
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Replace now equation (8.10) with the more restrictive equation

o
3

m 5 0

g m g m , m P m c 5 mc c (9.5)

That (9.5) implies (8.10) for each of the components of c can be seen as

follows. If c is a solution of (9.5), then one has

1 o
3

m 5 0

g m g m , m P m 2
2

c 5 m 2 c2 c (9.6)

Using (9.4), we can write the l.h.s. of (9.6) as ( g m , m P2
m c . Hence (9.6) reduces

to (8.10).

Equation (9.5) is the Dirac equation, except that it differs from it because

the momentum operators P m appearing in (9.5) are not the differential opera-

tors i " g m , m - / - q m , m 5 0, . . . , 3. The motivation for introducing (9.5) is that

there exists a representation of the Lorentz group which leaves the equation
invariant. The solutions of (9.5) can be mapped onto the well-known solutions

of the Dirac equation. Indeed, the general solution of (9.5) of the form c p

5 d p,0 c 0 ( p P R 4) is a superposition of four wave functions, two with positive

and two with negative energy:

c 0(k) 5 1 c 0(k)

0 2 ^ 1
mc

0

" k0 1 " k3

" k1 1 i " k2 2 1 1 c 1(k)

0 2 ^ 1
0

mc

" k1 2 i " k2

" k0 2 " k3 2
1 1 0

c 2(k) 2 ^ 1
" k0 1 " k3

" k1 1 i " k2

2 mc

0 2 1 1 0

c 3(k) 2 ^ 1
" k1 2 i " k2

" k0 2 " k3

0

2 mc 2 (9.7)

In the conventional approach the general solution of the Dirac equation is

the Fourier transform of (9.7) [see, e.g., Scharf (1989), expression (1.4.35)].

10. CHARACTERISTIC MATRICES

From equation (9.5) one can derive an equation for characteristic func-

tions as follows. Using (8.5), we can write it as

o
3

m 5 0

g m
"
i

-
- q m

W (0, q) c 5 mcW(0, q) c (10.1)
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Now introduce 4 by 4 matrices F ( p, q) by

F n 8, n ( p, q) 5 ^ c n 8 ) W( p, q) | c n & (10.2)

F is called a characteristic matrix hereafter. Equation (10.1) implies the

following matrix equation:

o
3

m 5 0

"
i

-
- q m

g m F (0, q) 5 mc F (0, q) (10.3)

This equation is the analog of Dirac’ s equation for characteristic matrices.

By iterating the equation, one verifies that each of the 16 elements of the

matrix F satisfies the Klein±Gordon equation (7.1c).
A further generalization of (10.3) is

o
3

m 5 0 1 i " -
- q m

1
i

2
g m , m p m 2 g m F ( p, q) 1 mc F ( p, q) 5 0 (10.4a)

By iterating this equation one verifies that each of the 16 elements of the

characteristic matrix F satisfies equation (6.7b), provided that also the

equation

o
3

m 5 0

p m
-

- q m
F ( p, q) 5 0 (10.4b)

is satisfied. Finally, note that F should satisfy the normalization condition

Tr F (0.0) 5 1 (10.4c)

and the positivity condition

o
j,k

e 2 i s (pj,qj;pk,qk)/2 " Tr l *j F ( pj 2 pk , qj 2 qk) l k $ 0 (10.4d )

for all possible choices of complex 4-by-4 matrices l 1, . . . , l n , and of p1,

q1, . . . , pn , qn P R 4.

Equations (10.4) describe a spin-1/2 particle with exact mass m. The

characteristic function of the particle is given by

f ( p, q) 5 d p,0 Tr F (q) (10.5)

It describes the position and momentum of the particle, while the characteristic

matrix includes also information about the internal state of the particle. In

fact, F determines a mathematical state on the tensor product of the Weyl

algebra with the Clifford algebra C4. The relevant observables are

W( p, q) ^ s n ^ s n 8 (10.6)
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where the s n ^ s n 9 act on the four-componen t wave functions as

s n ^ s 0 5 1 s n 0

0 s n 2 , s n ^ s 1 5 1 0 s n

s n 0 2 (10.7)

s n ^ s 2 5 1 0 2 i s n

i s n 0 2 , s n ^ s 3 5 1 s n 0

0 2 s n 2
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